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2 Syllabus

This course provides an overview to the Overlapping Generations (OLG)
model, one of the most versatile and influential frameworks in modern
macroeconomics. Unlike the Ramsey model with infinitely-lived agents,
the OLG framework captures the realistic life-cycle dynamics where indi-
viduals live for finite periods, making decisions about consumption, sav-
ings, and intergenerational transfers.

The OLG model is particularly powerful for analyzing issues that involve
intergenerational considerations, such as social security systems, public
debt sustainability, educational policies, and long-run economic develop-
ment. The course combines theoretical foundations with applications to
contemporary economic research, demonstrating how this framework helps
us understand fundamental questions about economic growth, inequality,
and policy design.

Through the study of cutting-edge research papers, we explore how
economists use the OLG framework to investigate diverse phenomena
from the evolution of social preferences to environmental sustainability.

2.1 Course Objectives

Upon completion of this course, students will be able to:

Theoretical Foundations: - Understand the core OLG model with its
key assumptions - Use the OLG model to discuss about different issues
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Technical Skills: - Solve household optimization problems in a life-cycle
context with perfect foresight

Research Applications: - Critically analyze how contemporary re-
searchers extend the basic OLG framework - Understand applications to
cultural evolution, environmental economics, and development - Develop
skills to formulate and solve original research questions using the OLG
framework

2.2 Prerequisites

• Intermediate Microeconomics (consumer theory, optimization)
• Mathematical Methods for Economics (dynamic systems)
• Basic knowledge of econometrics is helpful but not required

2.3 Course Format

• Duration: 10 sessions (2 hours per session)

2.4 Assessment

Student evaluation consists of:

• Written Report with Oral Defense (100%): Comment and
discuss one of the proposed articles using the OLG model.

– The objective of the report is to demonstrate your understand-
ing of the core ideas of the article, not every technical de-
tail.

– The report shall discuss:
∗ What the article is about and why it is important
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∗ Description of the model (general structure, key assump-
tions, preferences, technologies, equilibrium, dynamics)

∗ Key results and economic intuition
∗ Critical assessment (strengths, weaknesses, possible exten-

sions)

2.5 Contact Information

• Instructor: Eric Roca (eric.roca_fernandez@uca.fr)
• Office Hours: By appointment

2.6 Bibliography

2.6.1 Core Textbooks

• Croix and Michel (2009)
• Campante, Sturzenegger, and Velasco (2021) Freely available online

2.6.2 Research Papers

• Diamond (1965)
• Galor and Moav (2006)
• Galor and Özak (2016)
• Croix and Dottori (2008)
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3 The OLG model

3.1 Introduction

Based on Croix and Michel (2009).

The overlapping generations (OLG) model focuses on the life-cycle: agents
make decisions regarding how to consume and how much to save for re-
tirement. Individuals live for two periods of time, work when young, and
retire when old. This framework is particularly useful for studying inter-
generational redistribution, allowing us to analyze:

• social security systems,
• education policies, and
• public debt.

The key feature of the OLG model is that agents are heterogeneous by
age. In the first period of life, individuals are young and work. When old,
they retire and live from savings. Hence, at any point in time, two types
of agents with different budget constraints coexist: young and old.1

A basic reference for this model is Diamond (1965).

1Bisin and Verdier also model the case when parental indoctrination and how it affects
the evolution of cultural traits.
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3.2 Preliminaries

In this model, time is discrete and extends from 𝑡 = 0, 1, … , ∞. Individuals
make decisions at points in time. We shall have initial conditions detailing
the state of the economy at 𝑡 = 0.

3.2.1 Individuals live for two periods

Individuals live for two periods, meaning that, at every point in time, two
generations are alive and overlap.

This is relevant: the economy goes on forever but individuals only operate
during some periods. Hence, there will be infinite two-period-lived genera-
tions. In particular, at 𝑡 = 0, we will have a young and an adult generation.
This adult generation will die at the end of 𝑡 = 1, the young generation
will become adults and have children: the new young generation of 𝑡 = 2.
Hence, we can represent the generations diagrammatically —in brackets I
have denoted the year in which each generation was born.

𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5
Old
(t=-1)

Die

Young(t=0)Old (t=0) Die
Young(t=1)Old (t=1) Die

Young(t=2) Old (t=2) Die
Young(t=3) Old (t=3) Die

Young(t=4) Old (t=4)
Young(t=5)

To simplify the model, we assume that each adult born in 𝑡−1 has 𝑛 > −1
children.
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Note: we assume the number of children to be constant. More complex
set-ups include endogenous fertility (see Section 3.9).

These are the young population at time 𝑡 Therefore, the total population
𝑁 at time 𝑡 is composed of adults and young people.

𝑁𝑡 = 𝑁𝑡−1⏟
Adults

+ 𝑁𝑡−1𝑛⏟
Youngs

= 𝑁𝑡−1(1 + 𝑛).

The total population at any time 𝑡 is:

𝑁𝑡 = 𝑁0(1 + 𝑛)𝑡.

3.3 Assumptions

3.3.1 Firms

We assume that a large number of identical firms populate the economy.
Firms produce a single, homogeneous good using capital and labour. Each
firm solves the following profit maximization problem:

max
𝐾𝑡,𝐿𝑡

𝐹(𝐾𝑡, 𝐿𝑡) − 𝑟𝑡𝐾𝑡 − 𝑤𝑡𝐿𝑡

where 𝐹(𝐾, 𝐿) is the production function, 𝑟𝑡 is the rental rate of capital,
and 𝑤𝑡 is the wage rate.

We assume the production function satisfies standard neoclassical proper-
ties:

Assumption OLG 1: The production function 𝐹(𝐾, 𝐿) is:

• OLG 1.1 Continuous and twice continuously differentiable,
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• OLG 1.2 Strictly increasing in both arguments: 𝐹𝐾(𝐾, 𝐿) > 0 and
𝐹𝐿(𝐾, 𝐿) > 0,

• OLG 1.3 Strictly concave: 𝐹𝐾𝐾(𝐾, 𝐿) < 0, 𝐹𝐿𝐿(𝐾, 𝐿) < 0,
• OLG 1.4 Homogeneous of degree one (constant returns to scale),
• OLG 1.5 Satisfies the Inada conditions:

lim
𝐾→0

𝐹𝐾(𝐾, 𝐿) = lim
𝐿→0

𝐹𝐿(𝐾, 𝐿) = +∞
lim

𝐾→+∞
𝐹𝐾(𝐾, 𝐿) = lim

𝐿→+∞
𝐹𝐿(𝐾, 𝐿) = 0.

Since there are many firms competing in perfect competition, in equilib-
rium firms make zero profits and factors are paid their marginal products.
The first-order conditions for profit maximization are:

𝐹𝐾(𝐾𝑡, 𝐿𝑡) = 𝑟𝑡
𝐹𝐿(𝐾𝑡, 𝐿𝑡) = 𝑤𝑡

Since the production function 𝐹 is homogeneous of degree one, we can
write it in intensive (per-worker) terms:

𝑓(𝑘) ≡ 𝐹 (𝐾
𝐿 , 1) , 𝑘 ≡ 𝐾

𝐿 . (3.1)

Using Euler’s theorem for homogeneous functions, we have 𝐹(𝐾, 𝐿) =
𝐹𝐾(𝐾, 𝐿) ⋅ 𝐾 + 𝐹𝐿(𝐾, 𝐿) ⋅ 𝐿. Dividing by 𝐿 and using the definition of
𝑘:

𝑓(𝑘) = 𝑓 ′(𝑘) ⋅ 𝑘 + 𝑤

Therefore, the factor prices in intensive form are:
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𝑟𝑡 = 𝑓 ′(𝑘𝑡) (3.2)

𝑤𝑡 = 𝑓(𝑘𝑡) − 𝑓 ′(𝑘𝑡)𝑘𝑡. (3.3)

3.3.1.1 Example: Cobb-Douglas production function

We now derive the key relationships for the Cobb-Douglas production
function, which we will use throughout the rest of the chapter. Consider:

𝐹(𝐾𝑡, 𝐿𝑡) = 𝐾𝛼
𝑡 𝐿1−𝛼

𝑡 , 𝛼 ∈ (0, 1).

This function satisfies all our assumptions (OLG 1.1–1.5). In intensive
form:

𝑓(𝑘𝑡) = 𝐹 (𝐾𝑡
𝐿𝑡

, 1) = (𝐾𝑡
𝐿𝑡

)
𝛼

= 𝑘𝛼
𝑡 .

The marginal products are:

𝑓 ′(𝑘𝑡) = 𝛼𝑘𝛼−1
𝑡

𝑓(𝑘𝑡) − 𝑓 ′(𝑘𝑡)𝑘𝑡 = 𝑘𝛼
𝑡 − 𝛼𝑘𝛼−1

𝑡 ⋅ 𝑘𝑡 = (1 − 𝛼)𝑘𝛼
𝑡

Therefore, under Cobb-Douglas production, the factor prices are:

𝑟𝑡 = 𝛼𝑘𝛼−1
𝑡

𝑤𝑡 = (1 − 𝛼)𝑘𝛼
𝑡

13



{#eq-cobb_douglas_prices}

Note: The parameter 𝛼 represents capital’s share in total output, while
(1 − 𝛼) is labour’s share. These shares remain constant regardless of the
capital-labour ratio 𝑘𝑡.

3.3.2 Households

Individuals live for two periods. As before, we assume perfect foresight for
individuals.

Assumption OLG 2 Individuals have perfect foresight.

When young, they are endowed with one unit of labour that they supply
inestastically.

Assumption OLG 3 Individuals supply one unit of labour inelastically
when young. They receive the ongoing wage rate 𝑤𝑡 and allocate this
income between:

• current consumption 𝑐𝑡,
• savings 𝑠𝑡 that are invested in the firms.

Therefore, the budget constraint of a young individual in period 𝑡 is:

𝑤𝑡 = 𝑐𝑡 + 𝑠𝑡.

Once an individual reaches old age the next period, he consumes his sav-
ings (plus the interest rate received), reproduces —exogenous fertility at
rate 𝑛— and dies. Old people do not care about anything happening after
death. Therefore, an agent has one unique choice:

• consumption when adult, 𝑑𝑡+1.

14



The budget constraint for this period is:

𝑠𝑡(1 − 𝛿 + 𝑟𝑡+1) = 𝑑𝑡+1.

with 𝛿 ∈ (0, 1) being the capital depreciation rate.

Hence, an individual faces two budget constraints. However, we can col-
lapse both into a unique intertemporal budget constraint.

3.3.2.1 The intertemporal budget constraint

In the economy, we have consumption as the numeraire. It is more conve-
nient for us to combine the two budget constraints corresponding to young
and old ages into one single constraint. Starting from

{𝑤𝑡 = 𝑐𝑡 + 𝑠𝑡
𝑑𝑡+1 = 𝑠𝑡(1 − 𝛿 + 𝑟𝑡+1) = 𝑠𝑡𝑅𝑡+1

(3.4)

where 𝑅𝑡 ≡ 1 − 𝛿 + 𝑟𝑡+1 represents the return on savings, isolate 𝑠𝑡 in the
second equation and plug it in the first one:

𝑤𝑡 = 𝑐𝑡 + 𝑑𝑡+1
𝑅𝑡+1

. (3.5)

The intertemporal budget constraint indicates that the total present value
of income (𝑤𝑡, the only source of income) equals the total present value
of expenditures. The present value of consumption when old 𝑑𝑡+1 is dis-
counted using the interest rate 𝑅𝑡+1.
It is clear that savings, as usual, will be a function of wages 𝑤 and interests
𝑅. So will consumption at all periods of time.
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3.3.2.2 Utility function

We suppose that the life-cycle utility function is additively separable:

𝑈(𝑐, 𝑑) = 𝑢(𝑐) + 𝛽𝑢(𝑑), 𝛽 ∈ (0, 1) (3.6)

where 𝛽 ∈ (0, 1) is the psychological discount factor. We assume that 𝑢(𝑐)
has the properties

Assumption OLG 4

• OLG 4.1 𝑢′(𝑐) > 0,
• OLG 4.2 𝑢′′(𝑐) < 0,
• OLG 4.3 lim𝑐→0 𝑢′(𝑐) = +∞.

The last assumption lim𝑐→0 𝑢′(𝑐) = +∞ implies that an individual will
always have a positive consumption —as long as he has enough income to
finance it.

Another important implication of the choice of the utility formulation is
that 𝑐 and 𝑑 are normal goods: the demand is not decreasing in wealth. It
follows from additive separability and concavity.

3.3.3 The behaviour of individuals

At time 𝑡, young individuals receive their wages, consume and save while
maximising the utility function.

max𝑢(𝑐𝑡) + 𝛽𝑢(𝑑𝑡+1)
s.t. 𝑤𝑡 = 𝑐𝑡 + 𝑠𝑡

𝑑𝑡+1 = 𝑅𝑡+1𝑠𝑡
𝑐𝑡 ≥ 0, 𝑑𝑡+1 ≥ 0.
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{#eq-optimization_problem}

We have two possibilities to solve this problem:

3.3.3.1 Substitution

First, we can substitute 𝑐𝑡 and 𝑑𝑡+1 in the utility function, leading to:

𝑢(𝑤𝑡 − 𝑠𝑡) + 𝛽𝑢(𝑅𝑡+1𝑠𝑡).

This function is strictly concave with respect to 𝑠𝑡 because of our assump-
tions. The solution is the savings function:

𝑠𝑡 = 𝑠(𝑤𝑡, 𝑅𝑡+1).

The solution is interior as a consequence of the assumptions, and it is
characterised by the first-order condition:

𝑢′(𝑤𝑡 − 𝑠𝑡) = 𝛽𝑅𝑡+1𝑢′(𝑅𝑡+1𝑠𝑡). (3.7)

3.3.3.2 Lagrangian

Instead, we can use the intertemporal budget constraint and build the
Lagrangian:

ℒ = 𝑢(𝑐𝑡) + 𝛽𝑢(𝑑𝑡+1) + 𝜆𝑡(𝑤𝑡 − 𝑐𝑡 − 𝑑𝑡+1
𝑅𝑡+1

).

The first order conditions imply that:
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𝑢′(𝑐𝑡) = 𝜆𝑡, 𝛽𝑢′(𝑑𝑡+1) = 𝜆𝑡
𝑅𝑡+1

.

Combining both, we obtain Equation 3.7 again:

𝑢′(𝑐𝑡) = 𝛽𝑅𝑡+1𝑢′(𝑑𝑡+1).

3.4 Examples of utility functions and savings
behavior

To understand how individuals save, we now consider two specific cases
that illustrate different aspects of the savings decision.

3.4.1 Example 1: Log-utility

The simplest case is logarithmic utility:

𝑢(𝑐) = log(𝑐).

This is a special case of the CIES utility function with 𝜎 = 1. From the
Euler equation Equation 3.7, we have:

1
𝑤𝑡 − 𝑠𝑡

= 𝛽𝑅𝑡+1
1

𝑅𝑡+1𝑠𝑡

Simplifying:

1
𝑤𝑡 − 𝑠𝑡

= 𝛽
𝑠𝑡

Solving for 𝑠𝑡:
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𝑠𝑡 = 𝛽(𝑤𝑡 − 𝑠𝑡) ⟹ 𝑠𝑡(1 + 𝛽) = 𝛽𝑤𝑡

Therefore, the savings function under log-utility is:

𝑠𝑡 = 𝛽
1 + 𝛽 𝑤𝑡. (3.8)

Key properties:

• Savings are a constant fraction of wage income,
• Savings are independent of the interest rate 𝑅𝑡+1,
• The marginal propensity to save is 𝛽

1+𝛽 ∈ (0, 1).

This result shows that under log-utility, the wealth effect and substitution
effect of interest rate changes exactly cancel out.

3.4.2 Example 2: General CIES utility

Now consider the constant intertemporal elasticity of substitution (CIES)
utility function:

𝑢(𝑐) = 𝑐1− 1
𝜎

1 − 1
𝜎

, 𝜎 > 0.

The parameter 𝜎 is the intertemporal elasticity of substitution: it
measures the willingness to substitute consumption across time in response
to changes in relative prices (the interest rate).

From the Euler equation:

(𝑤𝑡 − 𝑠𝑡)− 1
𝜎 = 𝛽𝑅𝑡+1(𝑅𝑡+1𝑠𝑡)− 1

𝜎
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Rearranging:

𝑑𝑡+1
𝑐𝑡

= 𝑅𝑡+1𝑠𝑡
𝑤𝑡 − 𝑠𝑡

= (𝛽𝑅𝑡+1)𝜎. (3.9)

While we cannot solve explicitly for 𝑠𝑡 in general, we can analyze how
savings respond to changes in the interest rate using implicit differen-
tiation.

3.4.2.1 The effect of interest rates on savings: implicit differentiation

To analyze how savings respond to changes in the interest rate, we use
the implicit function theorem. Define the function 𝜙(𝑠, 𝑤, 𝑅) from the
Euler equation:

𝜙(𝑠, 𝑤, 𝑅) = −𝑢′(𝑤 − 𝑠) + 𝛽𝑅𝑢′(𝑅𝑠) = 0.

This implicitly defines the savings function 𝑠 = 𝑠(𝑤, 𝑅). By the implicit
function theorem:

𝜕𝑠
𝜕𝑅 = −

𝜕𝜙
𝜕𝑅
𝜕𝜙
𝜕𝑠

.

Computing the partial derivatives:

𝜕𝜙
𝜕𝑅 = 𝛽𝑢′(𝑅𝑠) + 𝛽𝑅𝑢″(𝑅𝑠)𝑠 = 𝛽𝑢′(𝑑) [1 + 𝑢″(𝑑)

𝑢′(𝑑) 𝑅𝑠]

= 𝛽𝑢′(𝑑) [1 − 1
𝜎(𝑑)]
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where we use the fact that 𝜎(𝑑) = − 𝑢′(𝑑)
𝑢″(𝑑)𝑑 is the elasticity of intertemporal

substitution evaluated at 𝑑 = 𝑅𝑠.
Similarly:

𝜕𝜙
𝜕𝑠 = 𝑢″(𝑤 − 𝑠) + 𝛽𝑅2𝑢″(𝑅𝑠) < 0

by concavity of 𝑢. Therefore:

𝜕𝑠
𝜕𝑅 = −

𝛽𝑢′(𝑑) [1 − 1
𝜎(𝑑)]

𝑢″(𝑐) + 𝛽𝑅2𝑢″(𝑑) . (3.10)

The sign of this derivative depends on whether 𝜎(𝑑) ⪌ 1:

𝜕𝑠
𝜕𝑅

⎧{
⎨{⎩

> 0 if 𝜎 > 1 (substitution effect dominates)
= 0 if 𝜎 = 1 (log-utility: effects cancel)
< 0 if 𝜎 < 1 (wealth effect dominates)

Economic interpretation:

Two opposing forces determine the sign:

• Substitution effect: A higher interest rate makes future consump-
tion cheaper relative to present consumption, encouraging more sav-
ings.

• Wealth effect: A higher interest rate means that the same savings
yield more future consumption, so individuals can save less and still
achieve their desired consumption when old.

When 𝜎 > 1, individuals are willing to substitute consumption across time,
and the substitution effect dominates. When 𝜎 < 1, individuals prefer
smooth consumption paths, and the wealth effect dominates. When 𝜎 = 1
(log-utility), both effects exactly cancel.
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3.5 Temporary equilibrium

Before turning to the intertemporal equilibrium and the analysis of the
steady state, we study the temporary equilibrium that takes place every
period.

Recall that firms use capital and labour in a perfectly competitive environ-
ment, paying factors their marginal products as derived in Equation 3.2
and Equation 3.3.

1. Labour market equilibrium: Only young individuals supply
labour, and they do so inelastically (one unit each). During period 𝑡
there are 𝑁𝑡 young agents, hence labour supply equals 𝑁𝑡. Equating
this to labour demand from firms determines the wage rate:

𝑤𝑡 = 𝑓(𝑘𝑡) − 𝑓 ′(𝑘𝑡)𝑘𝑡 ≡ 𝜔(𝑘𝑡).

2. Capital market: Only old individuals own capital (from their sav-
ings when young). The capital stock at time 𝑡 equals the savings of
the young generation from period 𝑡 − 1:

𝐾𝑡 = 𝑁𝑡−1𝑠𝑡−1.

Since firms operate competitively with zero profits, they pay the
rental rate:

𝑅𝑡 = 𝑓 ′(𝑘𝑡).

3. Goods market: Total production at time 𝑡 is:

𝑌𝑡 = 𝐹(𝐾𝑡, 𝑁𝑡) = 𝑁𝑡𝑓(𝑘𝑡).

Total demand for goods comes from:

• Old generation consumption: 𝑁𝑡−1𝑑𝑡
• Young generation consumption and savings: 𝑁𝑡(𝑐𝑡 + 𝑠𝑡)
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Market clearing requires:

𝑌𝑡 = 𝑁𝑡−1𝑑𝑡 + 𝑁𝑡(𝑐𝑡 + 𝑠𝑡).

Definition: A temporary equilibrium is a set
𝑤𝑡, 𝑅𝑡, 𝐾𝑡, 𝐿𝑡, 𝑌𝑡, 𝑘𝑡, 𝑐𝑡, 𝑠𝑡, 𝑑𝑡 that satisfies:

𝑤𝑡 = 𝜔(𝑘𝑡),
𝑅𝑡 = 𝑓 ′(𝑘𝑡),
𝐿𝑡 = 𝑁𝑡,
𝑌𝑡 = 𝑁𝑡𝑓(𝑘𝑡),
𝑌𝑡 = 𝑁𝑡−1𝑑𝑡 + 𝑁𝑡(𝑐𝑡 + 𝑠𝑡),
𝑐𝑡 = 𝑤𝑡 − 𝑠𝑡,
𝑠𝑡 = 𝑠(𝜔(𝑘𝑡), 𝑅𝑡+1),
𝑑𝑡 = 𝑅𝑡𝑠𝑡−1.

The existence of a temporary equilibrium is guaranteed because all func-
tions are continuous and well-defined.

3.6 Intertemporal equilibrium with perfect foresight

The equilibrium equation that links consecutive periods is the capital
accumulation equation. In particular, the savings of young individuals
at period 𝑡 are transformed into productive capital at 𝑡 + 1.
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3.6.1 From aggregate to per-capita capital accumulation

Note: In the OLG model, it is essential to carefully distinguish between
aggregate and per-capita variables. We work through this transformation
step by step.

Step 1: Aggregate capital accumulation

The capital stock at time 𝑡 + 1 equals the total savings of all young indi-
viduals at time 𝑡:

𝐾𝑡+1 = 𝑁𝑡𝑠𝑡.

Since there are 𝑁𝑡 young individuals at time 𝑡, each saving 𝑠𝑡, total savings
equal 𝑁𝑡𝑠𝑡.

Step 2: Definition of per-capita capital

The capital-labour ratio (per-capita capital) at time 𝑡 + 1 is defined as:

𝑘𝑡+1 = 𝐾𝑡+1
𝑁𝑡+1

.

Important: Note that we divide by 𝑁𝑡+1 (the number of young workers
at 𝑡 + 1), not by 𝑁𝑡. This is because 𝑘𝑡+1 represents capital per young
worker at time 𝑡 + 1.
Step 3: Combining both equations

Substituting 𝐾𝑡+1 = 𝑁𝑡𝑠𝑡 into the definition of 𝑘𝑡+1:

𝑘𝑡+1 = 𝐾𝑡+1
𝑁𝑡+1

= 𝑁𝑡𝑠𝑡
𝑁𝑡+1

.

Step 4: Using population growth
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Recall from the preliminaries that 𝑁𝑡+1 = 𝑁𝑡(1 + 𝑛), where 𝑛 is the pop-
ulation growth rate.Substituting:

𝑘𝑡+1 = 𝑁𝑡𝑠𝑡
𝑁𝑡(1 + 𝑛) = 𝑠𝑡

1 + 𝑛.

Therefore, the per-capita capital accumulation equation is:

𝑘𝑡+1 = 1
1 + 𝑛𝑠𝑡. (3.11)

Interpretation: This equation shows that per-capita capital growth de-
pends on:

1. Individual savings 𝑠𝑡 (the numerator),
2. Population growth 𝑛 (the denominator).

Even if individuals save a constant amount, per-capita capital can fall if
population grows too fast.

3.6.2 The intertemporal equilibrium

Now we incorporate the equilibrium conditions from the markets. Young
individuals at time 𝑡 choose savings based on:

1. Their wage income: 𝑤𝑡 = 𝜔(𝑘𝑡)
2. Their expectation of the future interest rate: 𝑅𝑡+1 = 𝑓 ′(𝑘𝑡+1)

Under perfect foresight, individuals correctly anticipate 𝑅𝑡+1. Therefore,
𝑠𝑡 = 𝑠(𝜔(𝑘𝑡), 𝑓 ′(𝑘𝑡+1)), and the capital accumulation equation becomes:

𝑘𝑡+1 = 1
1 + 𝑛𝑠(𝜔(𝑘𝑡), 𝑓 ′(𝑘𝑡+1)). (3.12)
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Definition: Given an initial capital stock 𝑘0 = 𝐾0/𝑁−1, an intertem-
poral equilibrium with perfect foresight is a sequence of temporary
equilibria
𝑘𝑡

∞
𝑡=0 that satisfies Equation 3.12 for all 𝑡 ≥ 0.

Key observation: Equation Equation 3.12 is an implicit equation for
𝑘𝑡+1 as a function of 𝑘𝑡, because 𝑘𝑡+1 appears on both sides (inside the
savings function through 𝑓 ′(𝑘𝑡+1)).

3.6.3 Why explicit solutions are difficult

For general utility and production functions, we cannot write an explicit
formula 𝑘𝑡+1 = 𝑔(𝑘𝑡).This is because:

1. The savings function 𝑠(𝑤, 𝑅) depends on the future interest rate
𝑅𝑡+1 = 𝑓 ′(𝑘𝑡+1),

2. This creates an implicit relationship that typically cannot be solved
algebraically.

Exception: Under log-utility, savings are independent of the interest
rate (Equation 3.8), so 𝑠𝑡 = 𝛽

1+𝛽𝑤𝑡 In this case, we can write an explicit
capital accumulation equation:

𝑘𝑡+1 = 1
1 + 𝑛 ⋅ 𝛽

1 + 𝛽 𝜔(𝑘𝑡). (3.13)

This is a major simplification that we will exploit when analyzing dynamics
and steady states.

3.6.4 Existence and uniqueness (brief remarks)

The implicit nature of Equation 3.12 raises questions about existence and
uniqueness:
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• Does a solution 𝑘𝑡+1 exist for every 𝑘𝑡?
• Is this solution unique?

For our purposes, we note the following results (see Croix and Michel
(2009, Ch. 2) for detailed proofs):

1. Existence: Under our assumptions (OLG 1-4), at least one tempo-
rary equilibrium exists for any 𝑘𝑡 ≥ 0.

2. Uniqueness: Uniqueness is guaranteed if the intertemporal elastic-
ity of substitution is sufficiently large. A sufficient condition is 𝜎 ≥ 1.
When 𝜎 < 1, multiple equilibria can arise, leading to indeterminacy
and potential coordination failures.

For the remainder of this chapter, we assume 𝜎 ≥ 1, which ensures:

• Unique temporary equilibria,
• Monotonic dynamics: 𝑘𝑡+1 = 𝑔(𝑘𝑡) is a well-defined function,
• Tractable analysis of steady states and stability.

3.7 Steady states

A steady state is a capital-labour ratio 𝑘̄ that remains constant over time:
if 𝑘𝑡 = 𝑘̄, then 𝑘𝑡+1 = 𝑘̄. From Equation 3.12, a steady state satisfies:

𝑘̄ = 1
1 + 𝑛𝑠(𝜔(𝑘̄), 𝑓 ′(𝑘̄)). (3.14)

This equation may have multiple solutions. We consider two important
cases.
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3.7.1 The autarky steady state: 𝑘̄ = 0

If 𝑓(0) = 0 (production requires capital), then 𝑘̄ = 0 is always a steady
state. When 𝑘𝑡 = 0:

• Wages are zero: 𝜔(0) = 0,
• Young individuals have no income, hence cannot save: 𝑠𝑡 = 0,
• Next period’s capital remains zero: 𝑘𝑡+1 = 0.

This is called the autarky steady state or poverty trap. Whether the
economy converges to this state depends on the initial conditions and the
stability properties.

3.7.2 Interior steady states: 𝑘̄ > 0

The economy may also have positive steady states where 𝑘̄ > 0. Unlike
the autarky state, these steady states feature positive production, con-
sumption, and welfare. Finding interior steady states analytically requires
solving Equation 3.14, which is typically impossible for general functions.
However, with specific functional forms, we can make progress.

Similarly, the Cobb-Douglas case 𝜌 → 0 also has zero as a steady state.
However, it is unstable.

3.7.3 Example: Cobb-Douglas production and log-utility

We now work through the complete analysis for the benchmark case: Cobb-
Douglas production with log-utility. This combination allows us to derive
explicit solutions and fully characterize the dynamics.

Setup:

• Production: 𝑓(𝑘𝑡) = 𝑘𝛼
𝑡 , 𝛼 ∈ (0, 1)

• Utility: 𝑢(𝑐) = log(𝑐)
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Figure 3.1: Autarky steady state and two positive steady states
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• Wages: 𝑤𝑡 = (1 − 𝛼)𝑘𝛼
𝑡 (from ?@eq-cobb_douglas_prices)

• Savings: 𝑠𝑡 = 𝛽
1+𝛽𝑤𝑡 (from Equation 3.8)

Capital accumulation:

Combining Equation 3.13 with the Cobb-Douglas wage:

𝑘𝑡+1 = 1
1 + 𝑛 ⋅ 𝛽

1 + 𝛽 ⋅ (1 − 𝛼)𝑘𝛼
𝑡 .

Define 𝜙 ≡ 𝛽(1−𝛼)
(1+𝑛)(1+𝛽) , then:

𝑘𝑡+1 = 𝑔(𝑘𝑡) = 𝜙𝑘𝛼
𝑡 . (3.15)

This is an explicit, autonomous difference equation. The dynamics are
fully determined by the function 𝑔(𝑘𝑡).
Finding steady states:

A steady state 𝑘̄ satisfies 𝑘̄ = 𝑔(𝑘̄) = 𝜙𝑘̄𝛼. Rearranging:

𝑘̄1−𝛼 = 𝜙.

This equation has two solutions:

1. Autarky: 𝑘̄1 = 0
2. Interior: 𝑘̄2 = 𝜙 1

1−𝛼 = [ 𝛽(1−𝛼)
(1+𝑛)(1+𝛽)]

1
1−𝛼

The interior steady state 𝑘̄2 is positive and economically meaningful.
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Figure 3.2: Steady states in the Cobb-Douglas with log-utility case
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3.8 Stability analysis: The Hartman-Grobman
theorem

To determine whether the economy converges to a steady state, we analyze
local stability using the Hartman-Grobman theorem. This theorem
states that the local behavior of a nonlinear dynamical system near a
steady state is determined by its linearization at that point.

For a one-dimensional discrete-time system 𝑘𝑡+1 = 𝑔(𝑘𝑡), the linearization
around a steady state 𝑘̄ is:

𝑘𝑡+1 − 𝑘̄ ≈ 𝑔′(𝑘̄)(𝑘𝑡 − 𝑘̄).

The eigenvalue of this linear system is simply 𝜆 = 𝑔′(𝑘̄). The steady
state is:

• Locally stable (attractive) if |𝜆| < 1,
• Unstable (repelling) if |𝜆| > 1,
• Indeterminate if |𝜆| = 1 (requires higher-order analysis).

Note: For our one-dimensional system, the “Jacobian matrix” is just the
scalar 𝑔′(𝑘̄), and the “eigenvalue” is this scalar itself.

3.8.1 Stability of the autarky steady state

For 𝑘̄1 = 0:

𝑔′(𝑘) = 𝜙𝛼𝑘𝛼−1.

Taking the limit as 𝑘 → 0:

lim
𝑘→0

𝑔′(𝑘) = lim
𝑘→0

𝜙𝛼𝑘𝛼−1 = +∞
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because 𝛼 − 1 < 0. Since |𝑔′(0)| = +∞ > 1, the autarky steady state is
locally unstable.

Interpretation: If the economy starts with any 𝑘0 > 0 (even arbitrarily
small), it will move away from 𝑘 = 0 toward the interior steady state.

3.8.2 Stability of the interior steady state

For 𝑘̄2 = 𝜙 1
1−𝛼 :

𝑔′(𝑘̄2) = 𝜙𝛼𝑘̄𝛼−1
2 .

Substitute 𝑘̄1−𝛼
2 = 𝜙, which implies

𝑘̄𝛼−1
2 = (𝑘̄1−𝛼

2 )−1 ⋅ 𝑘̄0
2 = 1

𝜙.

Therefore:

𝑔′(𝑘̄2) = 𝜙𝛼 ⋅ 1
𝜙 = 𝛼.

Since 𝛼 ∈ (0, 1), we have |𝑔′(𝑘̄2)| = 𝛼 < 1. The interior steady state is
locally stable.

Interpretation: For any initial capital 𝑘0 in a neighborhood of 𝑘̄2, the
economy converges to 𝑘̄2 over time.
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3.8.3 Global dynamics

We can say more about global behavior:

1. For any 𝑘0 > 0: The function 𝑔(𝑘) = 𝜙𝑘𝛼 is increasing and concave.
Since the autarky steady state is unstable and the interior steady
state is stable, any initial 𝑘0 > 0 converges to 𝑘̄2.

2. Monotonic convergence:

• If 𝑘0 < 𝑘̄2: The sequence
𝑘𝑡 is increasing and converges from below.

• If 𝑘0 > 𝑘̄2: The sequence
𝑘𝑡 is decreasing and converges from above.

3. Rate of convergence: The speed of convergence is determined by
𝛼. Smaller 𝛼 (lower capital share) implies faster convergence.

Graphical representation: The dynamics are illustrated by plotting
𝑘𝑡+1 = 𝜙𝑘𝛼

𝑡 against the 45-degree line 𝑘𝑡+1 = 𝑘𝑡.

Single, non-autarky steady state This steady state is characterized by
a unique positive capital level 𝑘̄ > 0. This configuration requires 𝑓(0) > 0.
With a CES production function, capital and labour must be substitutes,
this is, < 0𝜌 < 1: (𝛼𝑘𝜌 + (1 − 𝛼)) 1

𝜌 .
Only an autarky steady state In this case, 𝑓(0) = 0 is required so that
the autarky steady state can exist. Moreover, it requires 𝑓(𝑘𝑡+1) < 𝑓(𝑘𝑡).
This type of setup requires 𝜌 < 0, this is, complementarity between capital
and labor and low levels of output given the inputs.

3.9 Application: Fertility and education choices

So far, we have treated the population growth rate 𝑛 as exogenous. How-
ever, households make deliberate choices about fertility and investment
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Figure 3.3: Autarky steady state and a positive steady state

35



k1 = 1.00
kt

k1 = 1.00k t
+

1

kt + 1 = g(kt)
kt + 1 = kt

Figure 3.4: Single, non-autarky steady state
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Figure 3.5: Only an autarky steady state

in children’s human capital. These decisions are central to understanding
economic development and the demographic transition.2

We now extend the model to incorporate the quality-quantity trade-off:
parents must decide between having more children (quantity) and investing
more in each child’s education (quality). In this version, we abstract from
capital accumulation to focus on human capital dynamics.

3.9.1 Model setup

Production: Output is produced using human capital and raw labor:

𝑌𝑡 = 𝐻𝛼
𝑡 𝐿1−𝛼

𝑡 (3.16)

2For a comprehensive review of the economics of fertility and family economics, see
Doepke et al. (2023).
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where 𝐻𝑡 is the aggregate level of human capital in the economy and 𝐿𝑡
is raw labor input. The output per worker is:

𝑦𝑡 = 𝑦𝛼
𝑡 .

Since workers own both factors of production (their human capital and
their raw labor), they receive the entire output as wages:

𝑤𝑡 = ℎ𝛼
𝑡 . (3.17)

Alternatively, if we let 𝐿𝑡 be the raw labor (hours) supplied by workers and
each supplies 𝑙𝑡 units, then 𝐿𝑡 = 𝑁𝑡𝑙𝑡 where 𝑁𝑡 is the number of workers.
Similarly, if each worker has human capital ℎ𝑡, then 𝐻𝑡 = ℎ𝑡𝐿𝑡 = ℎ𝑡𝑁𝑡𝑙𝑡.
Thus, total production is:

𝑌𝑡 = 𝐻𝛼
𝑡 𝐿1−𝛼

𝑡 = (ℎ𝑡𝑁𝑡𝑙𝑡)𝛼(𝑁𝑡𝑙𝑡)1−𝛼 = ℎ𝛼
𝑡 (𝑁𝑡𝑙𝑡) = ℎ𝛼

𝑡 𝐿𝑡.

Thus, output per worker is 𝑦𝑡 = ℎ𝛼
𝑡 . Because workers own their human

capital, they receive the entire output as wages: 𝑤𝑡 = ℎ𝛼
𝑡 .

Note

If we wanted to have two factors of production (human capital and
raw labor) paid separately, under a Cobb-Douglas production func-
tion, like 𝑌 = 𝐿𝛽𝐻1−𝛽, then the wage paid to raw labor would be:

𝑤𝑟𝑎𝑤 = 𝛽 (𝑌
𝐿 ) .

and the return to human capital would be:

𝑟ℎ𝑢𝑚𝑎𝑛 = (1 − 𝛽) ( 𝑌
𝐻 ) .

Because a worker supplies 1 unit of raw labor and has ℎ units of
human capital, their total income would be:
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𝑤 =𝑤𝑟𝑎𝑤 + 𝑟ℎ𝑢𝑚𝑎𝑛ℎ = 𝛽 (𝑌
𝐿 ) + (1 − 𝛽) ( 𝑌

𝐻 ) ℎ

=𝛽 (𝑌
𝐿 ) + (1 − 𝛽) ( 𝑌

ℎ𝐿) ℎ = 𝑦.

Preferences: Households live for one period and care about their own
consumption, the number of children, and the human capital of their chil-
dren:

𝑈𝑡 = log(𝑐𝑡) + 𝛾 log(𝑛𝑡𝑒𝛽
𝑡+1) (3.18)

where:

• 𝑐𝑡 is consumption,
• 𝑛𝑡 ≥ 0 is the number of children,
• 𝑒𝑡+1 ≥ 0 is the education (human capital) investment per child,
• 𝛾 > 0 measures the weight on children,
• 𝛽 ∈ (0, 1) captures the relative importance of child quality.

Budget constraint: Raising children requires time. Each child requires
𝜙 > 0 units of parental time, reducing time available for work. The house-
hold’s time endowment is normalized to 1, so time available for work is
1 − 𝜙𝑛𝑡.

Parents allocate their wage income between consumption and education
investment:

𝑤𝑡(1 − 𝜙𝑛𝑡) = 𝑐𝑡 + 𝑛𝑡𝑒𝑡+1. (3.19)

Feasibility: We require 𝜙𝑛𝑡 ≤ 1 to ensure non-negative labor supply.
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3.9.2 Household optimization

Substituting the budget constraint into the utility function:

𝑈𝑡 = log[𝑤𝑡(1 − 𝜙𝑛𝑡) − 𝑛𝑡𝑒𝑡+1] + 𝛾 log(𝑛𝑡𝑒𝛽
𝑡+1).

Using properties of logarithms:

𝑈𝑡 = log[𝑤𝑡(1 − 𝜙𝑛𝑡) − 𝑛𝑡𝑒𝑡+1] + 𝛾 log(𝑛𝑡) + 𝛾𝛽 log(𝑒𝑡+1). (3.20)

First-order conditions:

1. With respect to 𝑛𝑡:

𝑤𝑡𝜙 + 𝑒𝑡+1
𝑤𝑡(1 − 𝜙𝑛𝑡) − 𝑛𝑡𝑒𝑡+1

= 𝛾
𝑛𝑡

(3.21)

2. With respect to 𝑒𝑡+1:

𝑛𝑡
𝑤𝑡(1 − 𝜙𝑛𝑡) − 𝑛𝑡𝑒𝑡+1

= 𝛾𝛽
𝑒𝑡+1

(3.22)

Let 𝑐𝑡 = 𝑤𝑡(1 − 𝜙𝑛𝑡) − 𝑛𝑡𝑒𝑡+1. Then the FOCs become:

From Equation 3.21:

𝑤𝑡𝜙 + 𝑒𝑡+1
𝑐𝑡

= 𝛾
𝑛𝑡

⟹ 𝛾𝑐𝑡 = 𝑛𝑡(𝑤𝑡𝜙 + 𝑒𝑡+1). (3.23)

From Equation 3.22:

𝑛𝑡
𝑐𝑡

= 𝛾𝛽
𝑒𝑡+1

⟹ 𝛾𝛽𝑐𝑡 = 𝑛𝑡𝑒𝑡+1. (3.24)
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3.9.3 Solving for fertility and education

From Equation 3.23 and Equation 3.24, we can isolate the denominator 𝑐𝑡
in both.

From Equation 3.23:
𝑐𝑡 = 𝑛𝑡(𝑤𝑡𝜙 + 𝑒𝑡+1)

𝛾

And from Equation 3.24:

𝑐𝑡 = 𝑛𝑡𝑒𝑡+1
𝛾𝛽

Thus, equating these two expressions for 𝑐𝑡:

𝑛𝑡(𝑤𝑡𝜙 + 𝑒𝑡+1)
𝛾 = 𝑛𝑡𝑒𝑡+1

𝛾𝛽 .

Dividing both sides by 𝑛𝑡 (assuming 𝑛𝑡 > 0, which will always be the case
due to the logarithm in the utility) and multiplying through by 𝛾:

𝑤𝑡𝜙 + 𝑒𝑡+1 = 𝑒𝑡+1
𝛽 .

Rearranging:

𝑒𝑡+1 = 𝛽𝜙
1 − 𝛽 𝑤𝑡.

Next, substituting 𝑒𝑡+1 back into either expression for 𝑐𝑡 (we use Equa-
tion 3.24):

𝑤𝑡𝜙 + 𝑒𝑡+1
𝑤𝑡(1 − 𝜙𝑛𝑡) − 𝑛𝑡𝑒𝑡+1

= 𝛾
𝑛𝑡

.
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Thus,

𝑤𝑡𝜙 + 𝛽𝑤𝑡𝜙
1−𝛽

𝑤𝑡(1 − 𝜙𝑛𝑡) − 𝑛𝑡
𝛽𝑤𝑡𝜙
1−𝛽

= 𝛾
𝑛𝑡

.

Dividing numerator and denominator on the left-hand side by 𝑤𝑡:

𝜙 + 𝛽𝜙
1−𝛽

(1 − 𝜙𝑛𝑡) − 𝑛𝑡
𝛽𝜙

1−𝛽
= 𝛾

𝑛𝑡
.

Multiplying the left-hand side numerator and denominator by (1 − 𝛽) to
clear the fraction:

𝜙(1 − 𝛽) + 𝛽𝜙
(1 − 𝛽)(1 − 𝜙𝑛𝑡) − 𝑛𝑡𝛽𝜙 = 𝛾

𝑛𝑡
.

Rearranging:

𝜙𝑛 = 𝛾(1 − 𝛽)(1 − 𝜙𝑛) − 𝛾𝑛𝛽𝜙.

Collecting terms involving 𝑛𝑡 on the left-hand side and isolating 𝑛𝑡:

𝑛𝑡 = 𝛾(1 − 𝛽)
(1 + 𝛾)𝜙.

Key results:

1. Fertility is constant: 𝑛𝑡 = 𝛾(1−𝛽)
(1+𝛾)𝜙 depends only on parameters.

2. Education is proportional to wages: 𝑒𝑡+1 = 𝛽𝜙
1−𝛽𝑤𝑡. As the

economy develops and wages rise, parents invest more in each child’s
human capital.
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3.9.4 Human capital dynamics

Since wages equal 𝑤𝑡 = ℎ𝛼
𝑡 and human capital equals the education re-

ceived in the previous period (ℎ𝑡 = 𝑒𝑡), we have:

𝑒𝑡+1 = 𝛽𝜙
1 − 𝛽 ℎ𝛼

𝑡 . (3.25)

This is a first-order difference equation in education/human capital. In
the next period:

ℎ𝑡+1 = 𝑒𝑡+1 = 𝛽𝜙
1 − 𝛽 ℎ𝛼

𝑡 . (3.26)

Let 𝐴 = 𝛽𝜙
1−𝛽 . Then:

ℎ𝑡+1 = 𝐴ℎ𝛼
𝑡 . (3.27)

Steady state: At steady state, ℎ𝑡+1 = ℎ𝑡 = ℎ∗:

ℎ∗ = 𝐴(ℎ∗)𝛼 ⟹ (ℎ∗)1−𝛼 = 𝐴 ⟹ ℎ∗ = 𝐴 1
1−𝛼 . (3.28)

Stability: Deriving the dynamic equation Equation 3.27 and evaluating
at the steady state:

𝜕ℎ𝑡+1
𝜕ℎ𝑡

= 𝐴𝛼ℎ𝛼−1
𝑡 .

At steady state:

𝜕ℎ𝑡+1
𝜕ℎ𝑡

∣
ℎ𝑡=ℎ⋆

= 𝐴𝛼(ℎ∗)𝛼−1 = 𝐴𝛼 ⋅ 1
𝐴 = 𝛼.

Since 𝛼 ∈ (0, 1), this converges to the steady state from any initial condi-
tion.
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3.9.5 GDP per worker dynamics

Since 𝑦𝑡 = ℎ𝛼
𝑡 , GDP per worker evolves according to:

𝑦𝑡 = ℎ𝛼
𝑡 = (𝐴ℎ𝛼

𝑡−1)𝛼 = 𝐴𝛼ℎ𝛼2
𝑡−1. (3.29)

More generally, from ℎ𝑡 = 𝐴ℎ𝛼
𝑡−1:

𝑦𝑡 = ℎ𝛼
𝑡 .

At steady state:
𝑦⋆ = (ℎ⋆)𝛼 = 𝐴 𝛼

1−𝛼 . (3.30)
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Figure 3.6: Human capital and GDP dynamics

3.9.6 Discussion

This application illustrates how the OLG framework can be extended to
analyze human capital accumulation through education choices:

1. Endogenous growth: Unlike models with exogenous human capi-
tal, here education investments respond to wages, creating a feedback
loop between human capital and productivity.
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2. Quality-quantity trade-off: Parents optimally choose fertility
𝑛𝑡 = 𝛾(1−𝛽)

(1+𝛾)𝜙 and education per child 𝑒𝑡+1 = 𝛽𝜙𝑤𝑡
1−𝛽 . The parameter 𝛽

governs the relative importance of quality vs. quantity.

3. Convergence: The economy converges to a steady state level of
human capital ℎ∗ = ( 𝛽𝜙

1−𝛽)
1

1−𝛼 and GDP per worker 𝑦∗ = (ℎ∗)𝛼.

4. Policy implications: Policies that reduce the time cost of children
(𝜙) or increase the value of education (𝛽) can raise long-run human
capital and income levels.

For further reading on these topics and empirical evidence, see the com-
prehensive survey by Doepke et al. (2023).
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4 de la Croix and Dottori (2008)

This section discusses Croix and Dottori (2008), using a simplified model
to illustrate the key points.

4.1 Introduction

This paper analyses the very distinct population patterns of two remote
islands in the Pacific Ocean: Eastern Island and Tikopia. While Tikopians
managed to control population growth and natural resources usage, the
inhabitants of Eastern Island engaged in clan competition for the control
of resources, leading to overpopulation and overexplotation of resources.

A key aspect of this paper is the especial role of fertility. Most papers
assume that parents derive some utility from having children. However, in
de la Croix and Dottori, fertility is the result of a Nash bargaining process
for the control of resources. In particular, a larger population, facilitated
by having more children, raises the value of the fallback option during the
negotiation process. Consequently, individuals optimally decide to have
more children, because this implies a better bargaining position. In this
sense, equilibrium-level fertility rates result from the complementarities
between different groups’ fertility decisions. However, the externalities of
a higher fertiltiy rate are not internalised and, in the long run, population
explodes, leading to a natural catastrophe.
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4.1.1 Historical data

Based on data from archaeological studies, it has been estimated that the
population of Eastern Island increased very little between 400CE (100
people by that time) and 110CE, and from then on, it exploded, reach-
ing 10000 people during 1400-1600CE. The effects of the population race
could be perceived by 1600CE: food consumption declined and population
plummeted during the 17th century. By 1772, when Europeans arrived at
Eastern Island, the total population was around 3000 people. In parallel,
data about forests in Eastern Island indicate that upon the arrival of the
first settlers during 400CE, tree-cutting begun. By 1400CE, deforestation
had reached its peak and when the Europeans arrived, there were basically
no trees in the island.
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Figure 4.1: Figure 1 in de la Croix and Dottori, 2008
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Figure 4.2: Figure 2 in de la Croix and Dottori, 2008

Meanwhile, Tikopia was settled around 900BCE and people lived by slash
and burn agriculture. By 100BCE, due to decreasing returns from nat-
ural resources, pig breeding began, lasting until the 17th century, when
Tikopians abandoned it because pigs required too many resources. Total
population stabilized at around 1200 people and was kept at that level by
purposeful mechanisms: celibacy, abortion, infanticide, sea exploration by
young males, etc.
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4.2 The model

De la Croix and Dottori work using the OLG framework. In the paper,
agents live for two periods. However, important decisions are taken at the
clan level, which acts as a representative agent. Clans (and individuals)
are rational, have perfect foresight and take the actions of the other clans
as given. The timing is as follows:

1. Each clan chooses its fertility level,
2. A Nash-Cournot fertility equilibrium level arises,
3. Crops are cultivated and shared between clans following a non-

cooperative bargaining process.

For simplicity, the island is populated by two opposed clans, all individuals
belong to one clan only and they cannot change clan.

4.2.1 Preferences

Clan 𝑖 at time 𝑡 consists of 𝑁𝑖,𝑡 adults. Adults work, support their parents
and have children. Old agents only consume what their children provide
for them.1 Total utility is given by:

𝑈𝑖,𝑡 = 𝑐𝑖,𝑡 + 𝛽𝑑𝑖,𝑡+1,

where 𝑐𝑖,𝑡, 𝑑𝑖,𝑡+1 represents consumption when adult and old, respec-
tively.

1Bisin and Verdier also model the case when parental indoctrination and how it affects
the evolution of cultural traits.
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4.2.2 Budget

The income of an adult agent is 𝑦𝑖,𝑡. Each adult has to support his parents
by giving them some resources. However, support for parents is not linear,
but rather it depends on the number of siblings. In particular, each sibling
contributes the following share of his income:

𝜏
1 + 𝑛𝑖,𝑡−1

,

where 𝜏 ∈ (0, 1). Clearly, the contribution decreases with the number of
siblings.

Consequently, an agent in his old age who had 𝑛𝑖,𝑡 children receives, as
total old age support,

𝑑𝑖,𝑡+1 = 𝑛𝑖,𝑡
𝜏

1 + 𝑛𝑖,𝑡
𝑦𝑖,𝑡+1.

Lastly, since total income is distributed between consumption and support-
ing parents (𝑦𝑖,𝑡 = 𝑐𝑖,𝑡 + 𝜏

1+𝑛𝑖,𝑡−1
𝑦𝑖,𝑡), consumption when young is just:

𝑐𝑖,𝑡 = (1 − 𝜏
1 + 𝑛𝑖,𝑡−1

) 𝑦𝑖,𝑡.

4.2.3 Population

The population of each clan evolves according to the chosen fertility
level:

𝑁𝑖,𝑡+1 = 𝑁𝑖,𝑡𝑛𝑖,𝑡.

51



4.2.4 Production

Production depends only on land. The amount of land is fixed at 𝐿, and
total factor productivity depends on the available natural resources 𝑅𝑡.

𝑌𝑖,𝑡 = 𝐴(𝑅𝑡)𝐿.

The dynamics of resources follow the paper by Matsumoto (2002):

𝑅𝑡+1 = (1 + 𝛿 − 𝛿 𝑅𝑡
𝐾 − 𝑏(𝑁1,𝑡 + 𝑁2,𝑡)) 𝑅𝑡,

where 𝐾 > 0 is the carrying capacity (maximum possible number of re-
sources), 𝛿 > 0 is the growth rate of resources while 𝑏 > 0 measures the
effect of population on resources.

4.2.4.1 Crop-sharing

We denote by 𝜃𝑡 the share of crops 𝑌𝑡 that Group 1 appropriates. There-
fore, each adult in Groups 1 and 2 obtains:

𝑦1,𝑡 = 𝜃𝑡
𝑌𝑡

𝑁1,𝑡
,

𝑦2,𝑡 = (1 − 𝜃𝑡)
𝑌𝑡

𝑁2,𝑡
.

There are no property rights on the island, and groups have to bargain
to decide how to split the total porduction 𝑌𝑡. This bargaining process
is non-cooperative and, if no agreement is reached, clans will battle to
appropriate the entire production.
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4.3 Bargaining

Bargaining takes place under Nash-bargaining, and the outcome of the
process solves:

(𝑈1,𝑡 − ̄𝑈1,𝑡)𝛾(𝑈2,𝑡 − ̄𝑈2,𝑡)1−𝛾,

where 𝑈1,𝑡 is what Group 1 shall receive and ̄𝑈1,𝑡 is the fall-back option of
Group 1, this is, what Group 1 receives is there is no agreement. When
there is no agreement between Group 1 and Group 2, the clans fight and
the winner takes all. The probability that Group 1 wins the war, denoted
by 𝜋𝑡, depends on its size.

𝜋𝑡 = 𝑁1,𝑡
𝑁1,𝑡 + 𝑁2,𝑡

.

So, the more adults in one group, the more likely it is to win the war.
From the equation, it is clear that clans have an incentive to increase their
population: it helps win the war (if it happens) and provides them with a
better bargaining position by raising ̄𝑈𝑖,𝑡.
Suppose than clans reach an agreement 𝜃𝑡 on how to share crops: 𝜃𝑡 goes
to Group 1, and the remining 1 − 𝜃𝑡 goes to Group 2. Then, the indirect
utility of an individual is given by:

𝑈1,𝑡 = (1 − 𝜏
1 + 𝑛1,𝑡−1

) 𝜃𝑡𝑌𝑡
𝑁1,𝑡

+ 𝛽 𝑛1,𝑡𝜏
1 + 𝑛1,𝑡

𝜃𝑡+1𝑌𝑡+1
𝑁1,𝑡+1

,

𝑈2,𝑡 = (1 − 𝜏
1 + 𝑛2,𝑡−1

) (1 − 𝜃𝑡)𝑌𝑡
𝑁2,𝑡

+ 𝛽 𝑛2,𝑡𝜏
1 + 𝑛2,𝑡

(1 − 𝜃𝑡+1)𝑌𝑡+1
𝑁2,𝑡+1

.

If, instead, there is no agreement, clans fight, and the winner takes the
entire production. Since 𝜋𝑡 denotes the probability that Group 1 wins the
fight, the fall-back utilities are given by:
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̄𝑈1,𝑡 = 𝜋𝑡 (1 − 𝜏
1 + 𝑛1,𝑡−1

) 𝑌𝑡
𝑁1,𝑡

+ 𝛽 𝑛1,𝑡𝜏
1 + 𝑛1,𝑡

𝜃𝑡+1𝑌𝑡+1
𝑁1,𝑡+1

,

̄𝑈2,𝑡 = (1 − 𝜋𝑡) (1 − 𝜏
1 + 𝑛2,𝑡−1

) 𝑌𝑡
𝑁2,𝑡

+ 𝛽 𝑛2,𝑡𝜏
1 + 𝑛2,𝑡

(1 − 𝜃𝑡+1)𝑌𝑡+1
𝑁2,𝑡+1

.

The difference between 𝑈𝑖,𝑡 and ̄𝑈𝑖,𝑡 is:

𝑈1,𝑡 − ̄𝑈1,𝑡 = (1 − 𝜏
1 + 𝑛1,𝑡−1

) (𝜃𝑡 − 𝜋𝑡)
𝑌𝑡

𝑁1,𝑡
,

𝑈2,𝑡 − ̄𝑈2,𝑡 = (1 − 𝜏
1 + 𝑛2,𝑡−1

) (1 − 𝜃𝑡 − (1 − 𝜋𝑡))
𝑌𝑡

𝑁2,𝑡
.

Since, at the time of bargaining, (1 − 𝜏
1+𝑛𝑖,𝑡

) 𝑌𝑡
𝑁𝑖,𝑡

has already been deter-
mined, we can abstract from it in the maximisation.

After substituting, 𝜃𝑡, is the optimal sharing rule which solves

𝜃𝑡 = argmax (𝜃𝑡 − 𝜋𝑡)
𝛾 (1 − 𝜃𝑡 − (1 − 𝜋𝑡))

1−𝛾 .
The optimal level 𝜃𝑡 is then:

𝜃𝑡 = 𝑁1,𝑡
𝑁1,𝑡 + 𝑁2,𝑡

.

4.4 Fertility

Finally, we can compute the optimal fertility levels for each group by
maximising utility. So, Group 1 and Group 2 maximise:
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max
𝑛1,𝑡

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑎𝑡 𝑡
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(1 − 𝜏

1 + 𝑛1,𝑡−1
) 𝜃𝑡𝑌𝑡

𝑁1,𝑡
+

+ 𝛽𝜏𝑛1,𝑡
1 + 𝑛1,𝑡

⎡
⎢⎢⎢
⎣

𝑁1,𝑡+1

⏞𝑁1,𝑡𝑛1,𝑡
𝑁1,𝑡𝑛1,𝑡⏟

𝑁1,𝑡+1

+ 𝑁2,𝑡𝑛2,𝑡⏟
𝑁2,𝑡+1

⎤
⎥⎥⎥
⎦

𝐴(𝑅𝑡+1)
𝑁𝑡,1𝑛𝑡,1⏟

𝑁1,𝑡+1

.

max
𝑛2,𝑡

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑎𝑡 𝑡
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(1 − 𝜏

1 + 𝑛2,𝑡−1
) 𝜃𝑡𝑌𝑡

𝑁2,𝑡
+

+ 𝛽𝜏𝑛2,𝑡
1 + 𝑛2,𝑡

⎡
⎢⎢⎢
⎣

1 −

𝑁2,𝑡+1

⏞𝑁2,𝑡𝑛2,𝑡
𝑁2,𝑡𝑛2,𝑡⏟

𝑁2,𝑡+1

+ 𝑁2,𝑡𝑛2,𝑡⏟
𝑁2,𝑡+1

⎤
⎥⎥⎥
⎦

𝐴(𝑅𝑡+1)
𝑁𝑡,2𝑛𝑡,2⏟

𝑁2,𝑡+1

.

The optimum levels of fertility satisfy:

𝑛⋆
1,𝑡 = (𝑁2,𝑡

𝑁1,𝑡
)

1
3

,

𝑛⋆
2,𝑡 = (𝑁1,𝑡

𝑁2,𝑡
)

1
3

,

So, the best course of action for Group 1 is to increase its fertility as Group
2 becomes more populous, and a race for population occurs. Of course,
this has implications for the environment, because larger populations are
destructive:

𝑅𝑡+1 = (1 + 𝛿 − 𝛿 𝑅𝑡
𝐾 − 𝑏(𝑁1,𝑡 + 𝑁2,𝑡)) 𝑅𝑡,
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4.5 Steady state level of population and natural
resources

Lastly, we can compute the steady state level of population using the two
dynamical equations:

𝑛⋆
1,𝑡 = (𝑁2,𝑡

𝑁1,𝑡
)

1
3

⟹ 𝑁1,𝑡+1 = 𝑁1,𝑡 (𝑁2,𝑡
𝑁1,𝑡

)
1
3

𝑛⋆
2,𝑡 = (𝑁1,𝑡

𝑁2,𝑡
)

1
3

⟹ 𝑁2,𝑡+1 = 𝑁2,𝑡 (𝑁1,𝑡
𝑁2,𝑡

)
1
3

,

It is simpler to solve the corresponding linearised system, which we can
obtain by taking logarithms:

̃𝑁𝑖,𝑡+1 = 2
3

̃𝑁𝑖,𝑡 + 1
3

̃𝑁𝑗,𝑡,

where ̃𝑁 = log𝑁.
We can obtain the dynamics of the logarithmic system:

̃𝑁𝑖,𝑡 =
̃𝑁𝑖,0 + ̃𝑁𝑗,0

2 + 1
23−𝑡 ( ̃𝑁𝑖,0 − ̃𝑁𝑗,0) .

The steady state level of population, for each group is

̄𝑁𝑖 = ̄𝑁𝑗 = √𝑁1,0√𝑁2,0,

and the corresponding level of natural resources at the steady state is

𝑅̄ = 𝐾 (1 − 𝑏( ̄𝑁𝑖 + ̄𝑁𝑗)
𝛿 ) .
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4.5.1 Simulated trajectory

Lastly, we can compute the trajectory of the system for a set of parameters
to visualize the evolution of the main variables. For instance, if we take
the following parametrisation 𝑁1,0 = 9, 𝑁2,0 = 20, 𝛿 = 0.08, 𝐾 = 400, 𝑏 =
0.0012, 𝑅0 = 300
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Figure 4.3: Simulated trajectory of populations and resources over time

57



5 Galor and Moav (2006)

This section discusses the work of Galor and Moav (2006), which presents
an OLG model to explain the rise of publicly financed education and the
transition from a class structure characterised by capitalists and workers
to another one where all individuals are capitalists.

The papers proposes that the demise of the class structure was a deliberate
action from the part of the capitalists to sustain their profits as human
capital became more and more important in the production process. This
is, at some point in time, human capital becomes really necessary to pro-
duce, and the capitalists find it optimal to tax themselves to finance the
education of workers. Doing so, raises the human capital level and allows
them to keep their profits.

The paper is set-up after the industrial revolution, let’s say around 1850
and is meant to describe the transition of the modern economies between
that time and the beginning of the 20th century. The authors motivate the
paper by showing that during this time, school enrolment rates increased
while, at the same time, inequality decreased: the demise of classes. The
theory the authors propose parallels this evolution. Furthermore, they
supplement the model with econometrics that are compatible with the
predictions of the model.
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Figure 5.1: Figure 1 in Galor and Moav (2006)

5.1 The model

We present a simplified version of the model using precise functional forms
for the human capital accumulation process and the production function.
This paper comprises two separate sections: * The general model * The
application of the model to a society with two classes. We will follow this
approach.

For the moment, the economy comprises only one type of individuals. In-
dividuals live for two periods of time: young and adult. Young individuals
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do not produce and use their time to acquire human capital. If education
is provided, human capital accumulation is faster.

5.1.1 Production and prices

A single homogenous good is produced using physical and human capital
according to a Cobb-Douglas production function. In particular:

𝑌𝑡 = 𝐹(𝐻𝑡, 𝐾𝑡) = 𝐴𝐾𝛼
𝑡 𝐻1−𝛼

𝑡 = 𝐴𝑘𝛼
𝑡 , 𝑘𝑡 ≡ 𝐾𝑡

𝐻𝑡
.

Given the wage rate per efficiency unit of labour 𝑤𝑡 and the return to
capital 𝑟𝑡, producers maximise profits by choosing the level of capital 𝐾𝑡
and efficiency units of labour 𝐻𝑡, this is,
𝐾𝑡, 𝐻𝑡 = argmax [𝐴𝐻𝑡𝑘𝛼

𝑡 − 𝑤𝑡𝐻𝑡 − 𝑟𝑡𝐾𝑡] . Considering perfect competi-
tion, the inverse demand for each factor is:

𝑟𝑡 = 𝑓 ′(𝑘𝑡) = 𝛼𝐴𝑘𝛼−1
𝑡 = 𝑟(𝑘𝑡),

𝑤𝑡 = 𝑓(𝑘𝑡) − 𝑓 ′(𝑘𝑡)𝑘𝑡 = (1 − 𝛼)𝐴𝑘𝛼
𝑡 = 𝑤(𝑘𝑡).

5.1.2 Individuals and preferences

Every period, a new generation of size 1 is born. Individuals have only
parent and each has only one son. Individuals live for two periods: dur-
ing their youth, they accumulate human capital; and education improves
human capital accumulation. Young individuals may receive a positive
bequest from their parents on which they earn interests (the bequest is
physical capital that is lent to producers). When adults, they supply their
human capital as efficiency units of labour; receive interests on their assets
and allocate the total income between consumption and a bequest.
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The bequest 𝑏𝑡 is transferred from parents to children, and the government
collects a tax 𝜏𝑡 ≥ 0 on it. The remaining 1 − 𝜏𝑡 is saved for future
consumption. Physical capital fully depreciates between periods.

As mentioned, individuals accumulate human capital during their youth,
and if they are provided with education (𝑒𝑡), human capital accumulation
is enhanced. However, even if no education is provided, all young individ-
uals manage to obtain a minimum level of human capital: we set it equal
to one. We model human capital accumulation as follows:1

ℎ𝑡+1 = 1 + 𝑒𝑡
1 + 𝑒𝑡

= ℎ(𝑒𝑡).

This type of function ensures that under some conditions, investment in
education is not optimal; while guaranteeing a minimum level of human
capital.

When adults, individuals receive wages on their human capital, as well as
the rental price on the bequest (the part not taxed by the government).
Therefore, an individual with a bequest 𝑏𝑡 and education level 𝑒𝑡 has in-
come equal to:

𝐼 𝑖
𝑡+1 = 𝑤𝑡+1ℎ(𝑒𝑡) + (1 − 𝜏)𝑏𝑖

𝑡𝑅𝑡+1,
and, since capital fully depreciates, 𝑅𝑡+1 = 𝑟𝑡+1 = 𝑟(𝑘𝑡+1).
Lastly, the preferences of adults include consumption and a taste for giving
bequests. Bequests in the model are a type of luxury good: only when
income is large enough, 𝑏𝑡 > 0. In particular:

𝑢𝑖
𝑡 = (1 − 𝛽) log(𝑐𝑖

𝑡+1) + 𝛽 log( ̄𝜃 + 𝑏𝑖
𝑡+1),

where ̄𝜃 > 0 and 𝛽 ∈ (0, 1). The budget constraint is simple:

𝑐𝑖
𝑡+1 + 𝑏𝑖

𝑡+1 = 𝐼 𝑖
𝑡+1.

1Bisin and Verdier also model the case when parental indoctrination and how it affects
the evolution of cultural traits.
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5.1.3 Optimisation

We can easily compute the value of bequests, as a function of the income
level. Replacing 𝑐𝑡+1 in the objective function and taking the derivative
with respect to 𝑏𝑡+1 yields:

𝜕
𝜕𝑏𝑖

𝑡+1
= 0 ⟹ 1 − 𝛽

𝑏𝑖
𝑡+1 − 𝐼 𝑖

𝑡+1
+ 𝛽

𝑏𝑖
𝑡+1 + ̄𝜃 = 0 ⟹

𝑏𝑖
𝑡+1 = {𝛽(𝐼 𝑖

𝑡+1 − 𝜃) if 𝐼 𝑖
𝑡+1 > 𝜃

0 if 𝐼 𝑖
𝑡+1 ≤ 𝜃

where 𝜃 ≡ ̄𝜃 1−𝛽
𝛽 . Hence, when income is relative low, individuals do not

give bequests.

5.1.4 Evolution of physical and human capital

Remember that bequests left during period 𝑡 are the capital of period 𝑡+1.
If 𝐵𝑡 is the total amount of bequests left during 𝑡, then

𝐾𝑡+1 = (1 − 𝜏)𝐵𝑡.

The remaining 𝜏𝐵𝑡 goes to the government, which uses it to fund education.
Population is normalised to 1, therefore, each individual receives education
equal to: 𝑒𝑡 = 𝜏𝐵𝑡, and human capital evolves as:

𝐻𝑡+1 = ℎ(𝑒𝑡) = ℎ(𝜏𝑡𝐵𝑡) = 1 + 𝜏𝑡𝐵𝑡
1 + 𝜏𝑡𝐵𝑡

.

Last, the level of 𝑘𝑡 = 𝐾𝑡
𝐻𝑡

is:

𝑘𝑡+1 = 𝐾𝑡+1
𝐻𝑡+1

= (1 − 𝜏𝑡)𝐵𝑡
ℎ(𝜏𝑡𝐵𝑡)

= (1 − 𝜏𝑡)𝐵𝑡
1 + 𝜏𝑡𝐵𝑡

1+𝜏𝑡𝐵𝑡

= 𝑘(𝜏𝑡, 𝐵𝑡).
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5.2 Optimal level of taxation

The paper assumes that the government selects the tax rate that maximises
individuals’ utility. One important feature of the model is that utility
is increasing in income 𝐼 𝑖

𝑡+1. We can easily check this by rewriting the
indirect utility:

𝑢𝑖
𝑡 = (1 − 𝛽) log(𝑐𝑖

𝑡+1) + 𝛽 log( ̄𝜃 + 𝑏𝑖
𝑡+1) =

= {(1 − 𝛽) log(𝐼 𝑖
𝑡+1 − 𝛽𝐼 𝑖

𝑡+1 + 𝛽𝜃) + 𝛽 log(𝛽𝐼 𝑖
𝑡+1 − 𝛽𝜃) if 𝐼 𝑖

𝑡+1 > 𝜃
(1 − 𝛽) log(𝐼 𝑖

𝑡+1) + 𝛽 log( ̄𝜃) if 𝐼 𝑖
𝑡+1 ≤ 𝜃

which is increasing in 𝐼 𝑖
𝑡+1 because 𝛽 ∈ (0, 1).

Therefore, instead of maximising the indirect utility, the government can
maximise second-period income 𝐼 𝑖

𝑡+1, which in turn will maximise util-
ity. Second-period income is: 𝑤𝑡+1ℎ(𝜏 𝑖

𝑡 𝐵𝑡) + (1 − 𝜏 𝑖
𝑡 )𝑏𝑖

𝑡𝑅𝑡+1 where 𝑤𝑡+1 =
𝑤(𝑘𝑡+1 and 𝑅𝑡+1 = 𝑅(𝑘𝑡+1. At the same time, 𝑘𝑡+1 = (1−𝜏𝑡)𝐵𝑡

ℎ(𝜏𝑡𝐵𝑡) = (1−𝜏𝑡)𝐵𝑡
1+ 𝜏𝑡𝐵𝑡

1+𝜏𝑡𝐵𝑡
.

Putting everything together,

𝜏 𝑖
𝑡 = argmax𝑤𝑡+1ℎ(𝜏 𝑖

𝑡 𝐵𝑡) + (1 − 𝜏 𝑖
𝑡 )𝑏𝑖

𝑡𝑅𝑡+1

= argmax(1 − 𝜏 𝑖
𝑡 )𝛼ℎ(𝜏 𝑖

𝑡 𝐵𝑡)1−𝛼𝐵𝛼
𝑡 (1 − 𝛼 + 𝛼 𝑏𝑖

𝑡
𝐵𝑡

)
.

Maximising with respect to 𝜏 𝑖
𝑡 yields:
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𝜕
𝜕𝜏 𝑖

𝑡
= 0 ⟹

𝐵𝛼
𝑡 (1 − 𝛼 + 𝛼 𝑏𝑖

𝑡
𝐵𝑡

) [𝛼(1 − 𝜏 𝑖
𝑡 )𝛼−1ℎ(𝜏 𝑖

𝑡 𝐵𝑡)1−𝛼(−1)+

+(1 − 𝛼)ℎ′(𝜏 𝑖
𝑡 𝐵𝑡)ℎ(𝜏 𝑖

𝑡 𝐵𝑡)−𝛼𝐵𝑡(1 − 𝜏 𝑖
𝑡 )𝛼] = 0

𝛼(1 − 𝜏)𝛼−1ℎ(𝜏 𝑖
𝑡 𝐵𝑡)1−𝛼 =

= (1 − 𝛼)ℎ′(𝜏 𝑖
𝑡 𝐵𝑡)𝐵𝑡(1 − 𝜏)𝛼ℎ(𝜏 𝑖

𝑡 𝐵𝑡)𝛼

𝛼(1 − 𝜏)𝛼−1ℎ(𝜏 𝑖
𝑡 𝐵𝑡)1−𝛼𝐵𝛼−1

𝑡 =
= (1 − 𝛼)ℎ′(𝜏 𝑖

𝑡 𝐵𝑡)𝐵𝛼
𝑡 (1 − 𝜏)𝛼ℎ(𝜏 𝑖

𝑡 𝐵𝑡)𝛼

𝛼(1 − 𝜏)𝛼−1ℎ(𝜏 𝑖
𝑡 𝐵𝑡)1−𝛼𝐵𝛼−1

𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑅(𝑘1+1)

=

= (1 − 𝛼)𝐵𝛼
𝑡 (1 − 𝜏)𝛼ℎ(𝜏 𝑖

𝑡 𝐵𝑡)𝛼⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑤(𝑘𝑡+1)

ℎ′(𝜏 𝑖
𝑡 𝐵𝑡)

𝑅(𝑘𝑡+1) = 𝑤(𝑘𝑡+1)ℎ′(𝜏 𝑖
𝑡 𝐵𝑡)

The optimal condition for 𝜏 𝑖
𝑡 does not involve the bequest received 𝑏𝑖

𝑡.
Consequently, everybody will agree on the optimality of the tax rate and
it will be implemented. In our case, substituting and solving for 𝜏𝑡:

𝜏𝑡 = {
−𝐵𝑡(1+2𝛼)+√𝐵2

𝑡 (1+4(1+2𝐵𝑡)(1−𝛼)𝛼)
4𝐵2

𝑡 𝛼 if 𝐵𝑡 > 𝛼
1−𝛼

0 if 𝐵𝑡 ≤ 𝛼
1−𝛼

= 𝜏(𝐵𝑡)

Alternatively, it is possible to re-express the condition for positive taxation
in terms of 𝑘𝑡+1 ∶
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𝜏𝑡 = {
−𝐵𝑡(1+2𝛼)+√𝐵2

𝑡 (1+4(1+2𝐵𝑡)(1−𝛼)𝛼)
4𝐵2

𝑡 𝛼 if 𝑘𝑡+1 > 𝛼
1−𝛼

0 if 𝑘𝑡+1 ≤ 𝛼
1−𝛼

= 𝜏(𝐵𝑡)

5.3 One economy, two groups

We suppose now that the economy, at time 𝑡 = 0, consists of two groups:
capitalists (C) and workers (W). The share that capitalists represent is
denoted by 𝜆𝑡. However, since all individuals always have one child, shares
remain constant, this is, 𝜆𝑡 = 𝜆. The unique difference between the two
groups is the initial endowment of capital: * Capitalists own the initial
stock of capital (which we assume is sufficiently large as to be able to
bequest). * Workers have no capital, and thus give no bequests.

Therefore, the total amount of bequests in a given period is:

𝐵𝑡 = 𝜆𝑏𝐶
𝑡 + (1 − 𝜆)𝑏𝑊

𝑡 .

The remainder of the model is the same as before, in particular,

𝑘𝑡+1 = (1 − 𝜏(𝐵𝑡))𝐵𝑡
ℎ(𝜏(𝐵𝑡)𝐵𝑡)

.

Such an economy shifts from having to classes of people to only one, where
everybody owns capital. The critical transition occurs because of, eventu-
ally, capitalists find it optimal to impose a tax on themselves to finance
public education. With it, and as wages keep increasing, workers are even-
tually able to give bequests, thus becoming capitalists. Instead of detailing
the exact process (check the reference), we will simulate the economy for
a set of parameters.
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Figure 5.2: Simulated path of the economy proposed in Galor and Moav,
2006
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6 Galor and Özak (2016)

Galor and Özak (2016) show empirically how differences in time preference
(how much people discount the future) has an agricultural origin. This is
important for development, because those who save more are the individu-
als who are more patient, this is, who are more future-oriented. Although
the major contribution of the paper is empirical, the authors develop an
OLG model from which they derive implications that are tested.

The theoretical model shows how the composition of a population can be
modeled using the OLG framework. The most influential model in that
regard is Bisin and Verdier (2001). However, the model in Galor and Özak
is relatively simple and illustrates well some population dynamics.

6.1 The model

We work under the OLG framework, and we assume that the economy is
agricultural and at the very early stages of development. In every period,
the economy consists of individuals who live for three periods.

• During the first period of life, individuals are children and are eco-
nomically passive. Consumption during this period is provided by
parents.

• In the second period and third periods, individuals work
• All individuals can choose between two modes of production:
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– Endowment mode: it provides an equal pay-off during the sec-
ond and third periods of live. For instance, individuals may be
hunters.

– Investment mode: it pays little during the second period of live,
but the pay-off during the third period is much larger. This
represents farmers: they must seed and wait for crops to grow.

Lastly, a crucial assumption of the mode is the lack of financial mar-
kets and long-term storage technology. This implies that individuals
cannot transfers consumption between periods two and three. Hence, pro-
duction in the second period has to be consumed in the second period; and
consumption in the third period must be consumed in the third period.

6.1.1 Production modes

All adults must decide between the endowment mode or the investment
mode. The endowment mode provides a constant level of output,𝑅0 > 1
in each of the working periods. If investment is instead chosen, it requires
an investment during the first working period, which implies that less
resources are available for consumption. In particular, we assume that it
leaves individuals with 1 unit of consumption during their second period
of life. However, the output it yields during the third period 𝑅1 is higher
than under endowment: ln(𝑅1) > 2 ln(𝑅0).
Finally, depending on the chosen production mode, the income of individ-
ual 𝑖 is given by:

(𝑦𝑖,𝑡, 𝑦𝑖,𝑡+1) = {(𝑅0, 𝑅0) if endowment
(1, 𝑅1) if investment
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6.2 Preferences

A key aspect of the model to generate dynamics in the evolution of indi-
vidual traits is the fertility decision. This approach is common: typically,
fertility is linked to a trait through income. This is, individuals with more
income will be able to have more children. If the trait is transmitted from
parents to children, then the trait that allows generating more income will
become more and more prevalent in the economy.1 In any case, preferences
are really important in this type of models, because fertility decisions are
derived from them.

Every period 𝑡, a generation of size 𝐿𝑡 becomes economically active, this
is, reaches the second period of life. Those individuals were born in period
𝑡 − 1. At this stage, each individual will live for two periods. Remember
that financial markets do not exist, and also that it is impossible to
transfer resources between periods by storing them.

We assume that, during the second period of life, individuals only consume
what they produce. Lastly, during the third and last period individuals
consume and also have children. In particular, utility is given by:

𝑢𝑖,𝑡 = ln 𝑐𝑖,𝑡 + 𝛽𝑖
𝑡[𝛾 ln𝑛𝑖,𝑡+1 + (1 − 𝛾) ln 𝑐𝑖,𝑡+1], 𝛾 ∈ (0, 1),

where 𝑐𝑖,𝑡 and 𝑐𝑖,𝑡+1 are the levels of consumption in the second and third
periods of life and 𝑛𝑖,𝑡 is the number of children. It is important to com-
ment on 𝛽𝑖

𝑡 ∈ (0, 1]: it represents individual i’s discount factor, this is, how
much he values the future with respect to the present. The larger 𝛽𝑖

𝑡, the
more the value of future and, hence, the more patient the individual is.
Notice that 𝛽𝑖

𝑡 changes over time and also by individual.

During the second period, individuals do not really make any decision:
since resources cannot be transferred, all production must be consumed.

1Bisin and Verdier also model the case when parental indoctrination and how it affects
the evolution of cultural traits.
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Hence, 𝑐𝑖,𝑡 = 𝑦𝑖,𝑡. However, during the last period individuals can trade-
off utility from consumption and utility from children. The paper assumes
that each child costs 𝜏 units of consumption, which gives rise the last-
period budget constraint:

𝑦𝑖,𝑡+1 = 𝑐𝑖,𝑡+1 + 𝜏𝑛𝑖,𝑡+1.

Considering the preferences, utility maximisation implies:

𝑐𝑖,𝑡+1 = (1 − 𝛾)𝑦𝑖,𝑡+1,

𝑛𝑖,𝑡+1 = 𝛾
𝜏 𝑦𝑖,𝑡+1.

Lastly, the indirect utility (𝑣𝑖,𝑡) of individual 𝑖 is given by:

𝑣𝑖,𝑡 = ln 𝑦𝑖,𝑡 + 𝛽𝑖
𝑡[ln 𝑦𝑖,𝑡+1 + 𝜉], 𝜉 ≡ 𝛾 ln(𝛾

𝜏 ) + (1 − 𝛾) ln(1 − 𝛾).

6.3 Hunters or farmers

Since individuals can decide on their mode of production, they are free to
choose to become either hunters or farmers. This is, each individual will
decide the mode of production (endowment or investment) that maximises
lifetime utility. Hence,:

𝑣𝑖,𝑡 = {ln𝑅0 + 𝛽𝑖
𝑡(ln(𝑅0) + 𝜉) if endowment

ln 1 + 𝛽𝑖
𝑡(ln(𝑅1) + 𝜉) if investment

.

An individual is indifferent between modes of production if he obtains the
same utility from both. This is, the individual with 𝛽𝑖

𝑡 = ̂𝛽 is indifferent
between becoming a hunter or a farmer if and only if:

ln𝑅0 + ̂𝛽(ln(𝑅0) + 𝜉) = ln 1 + ̂𝛽(ln(𝑅1) + 𝜉).
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Solving for ̂𝛽 allows us to identify such individual:2

̂𝛽 = ln𝑅0

ln𝑅1 − ln𝑅0 ∈ (0, 1).

Lastly, all individuals with 𝛽𝑖
𝑡 < ̂𝛽 will optimally choose the endowment

technology while those with 𝛽𝑖
𝑡 > ̂𝛽 find the investment technology optimal.

Note that, as the return to agriculture increases (𝑅1 increases), the cutoff
value ̂𝛽 decreases:

𝜕 ̂𝛽
𝜕𝑅1 = − ln𝑅0

𝑅1(ln𝑅1 − ln𝑅0)2 < 0,

this is, as agriculture becomes more and more profitable, more individuals
will find it optimal to become hunters.

Hence, we can rewrite the income of an individual as a function of his
𝛽𝑖

𝑡:

(𝑦𝑖,𝑡, 𝑦𝑖,𝑡+1) = {(𝑅0, 𝑅0) if �it ≤ �̂
(1, 𝑅1) if �it > �̂

.

Of course, since income in the last period of life is different, hunters and
farmers will have different number of children. In particular, using the
optimal number of children derived above:

𝑛𝑖,𝑡+1 = 𝛾
𝜏 𝑦𝑖,𝑡+1 = {

𝛾
𝜏 𝑅0 ≡ 𝑛𝐸 if �it ≤ �̂
𝛾
𝜏 𝑅1 ≡ 𝑛𝐼 if �it > �̂

.

Because 𝑅1 > 𝑅0, farmers have more children than hunters.

2The assumption ln(𝑅1) > 2 ln(𝑅0) is important to establish that ̂𝛽 ∈ (0, 1).
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6.4 The evolution of preferences

Finally, we can compute how preferences change over time due to the
differential fertility between farmers and hunters. This is, because farmers
have more children than hunters, if we assume that preferences about time
𝛽𝑖

𝑡 are transmitted between parents and children, the share of farmers will
increase over time. The paper assumes almost that, although modifies
slightly the transmission of preferences for individuals engaging in farming.
In particular: * 𝛽𝑖

𝑡 is perfectly transmitted if an individual is a hunter.
* Farmers transmit a larger value of 𝛽𝑖

𝑡 to their children, reflecting an
acquired tolerance to waiting and delaying reward. This is:

𝛽𝑖
𝑖,𝑡+1 = {𝛽𝑖

𝑡 if �it ≤ �̂
𝜙(𝛽𝑖

𝑡, 𝑅1) if �it > �̂
,

with

• 𝛽𝑖
𝑡 ≤ 𝜙(𝛽𝑖

𝑡) < 1: the transmitted 𝛽 is always more than the one the
parent had,

• 𝜙( ̂𝛽, 𝑅1) > 𝛽𝑖
𝑡,

• 𝜙𝛽(𝛽𝑖
𝑡, 𝑅1) > 0: the higher the value of 𝛽𝑖

𝑡+1, the more it increases,
• 𝜙𝛽𝛽(𝛽𝑖

𝑡, 𝑅1) < 0: but at a decreasing rate,
• 𝜙𝑅(𝛽𝑖

𝑡, 𝑅1) > 0: the higher the value of 𝑅, the more 𝛽𝑖
𝑡+1 increases.

Suppose an individual at the beginning of time who has 𝛽𝑖
0 < ̂𝛽. This

individual will optimally decide to be a hunter, and according to the pro-
cess for the transmission of preferences, his sons will inherit 𝛽𝑖

1 = 𝛽𝑖
0.

Because ̂𝛽 is constant over time, all sons will decide to be hunters as well
and transmit the same time preferences, over and over again. Hence, if
𝛽𝑖

0 ≤ ̂𝛽 ⟹ lim𝑡→∞ 𝛽𝑖
𝑡 = 𝛽𝑖

0.
Suppose instead that 𝛽𝑖

0 > ̂𝛽. The individual will become a farmer and
transmit 𝜙(𝛽𝑖

0, 𝑅1) > 𝛽𝑖
0. Accordingly, all his sons will also be farmers
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and keep transmitting an ever-increasing value of 𝛽𝑖
𝑡+1. However, because

𝜙𝛽𝛽(𝛽𝑖
𝑡, 𝑅1) < 0, the transmission process has a steady-state, this is,

lim𝑡→∞ 𝛽𝑖
𝑡 = ̄𝛽𝐼 . Notice that ̄𝛽𝐼 is the maximum level 𝛽𝑖

𝑡 can reach.

6.4.1 Proof (not in the paper)

We want to show that 𝛽𝑖
𝑡+1 = 𝜙(𝛽𝑖

𝑡, 𝑅1) has a unique steady-state. This
amounts to showing that ̄𝛽𝐼 = 𝜙( ̄𝛽𝐼 , 𝑅1) for a unique value ̄𝛽𝐼 . Define
𝐺(𝛽) = 𝜙(𝛽, 𝑅) − 𝛽. Since we focus on farmers, we know that the very
initial one in the dynasty had 𝛽𝑖

0 > ̂𝛽. So, for our purposes, the function
𝐺 has as domain 𝛽 ∈ [ ̂𝛽, ∞). We know that 𝐺( ̂𝛽) = 𝜙( ̂𝛽, 𝑅1) − ̂𝛽 > 0
because 𝜙( ̂𝛽, 𝑅1) > 𝛽𝑖

𝑡. Moreover, the function 𝐺 has unique maximum at
𝜙𝛽 = 1 because 𝜙𝛽𝛽 < 0, and the maximum is positive because it must be
larger than 𝜙( ̂𝛽, 𝑅1)− ̂𝛽 > 0. After the maxima, the function continuously
decreases, thus crossing only one the horizontal axis, this is, there is a
unique value ̄𝛽 such that 𝐺( ̄𝛽𝐼) = 0, which constitutes the unique steady
state.

6.5 Evolution of traits over time

Lastly, suppose that initially, at time 𝑡 = 0, the initial population presents
different levels of time preference. We assume that, initially, traits are
characterised by some distribution of 𝜂(𝛽𝑖

0) with support [0, ̄𝛽𝐼 ]. Further-
more, we normalise the initial generation to be of size one: 𝐿0 = 1. Alter-
natively:

𝐿0 = ∫
̄𝛽𝐼

0
𝜂(𝛽𝑖

0)d𝛽𝑖
0 = 1.
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We also know that all individuals whose 𝛽𝑖
0 ≤ ̂𝛽 decide to use the endow-

ment technology, and the remaining opt for the investment technology.
Therefore, the size of hunters (E) and farmers (I) is given by:

𝐿𝐸
0 = ∫

̂𝛽

0
𝜂(𝛽𝑖

0)d𝛽𝑖
0,

𝐿𝐼
0 = ∫

̄𝛽𝐼

̂𝛽
𝜂(𝛽𝑖

0)d𝛽𝑖
0.

The number of individuals evolves according to the fertility rate of each
group, this is,

𝐿𝐸
𝑡 = 𝐿𝐸

0 𝑛𝐸𝑡 = (𝛾
𝜏 𝑅0)𝑡𝐿𝐸

0

𝐿𝐼
𝑡 = 𝐿𝐼

0𝑛𝐼𝑡 = (𝛾
𝜏 𝑅1)𝑡𝐿𝐼

0

and total population is 𝐿𝑡 = 𝐿𝐸
𝑡 + 𝐿𝐼

𝑡 .
Finally, notice that the distribution of 𝛽𝑖

𝑡 does not change for those individ-
uals with 𝛽𝑖

𝑡 ≤ ̄𝛽: in fact, they all have the same number of children, and
each child inherits the trait of his parent. Therefore, the average value ̄𝛽𝐸

is constant over time. In contrast, the average value ̄𝛽𝐼
𝑡 increases. In any

case, at any given period 𝑡, the overall average value for time preference
is given by:

̄𝛽𝑡 = 𝜃𝐸
𝑡

̄𝛽𝐸
𝑡 + (1 − 𝜃𝐸

𝑡 ) ̄𝛽𝐼
𝑡 ,

where 𝜃𝐸
𝑡 is the fraction of individuals who engage in the endowment pro-

duction process, and ̄𝛽𝑡 is just the weighted average.
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𝜃𝐸
𝑡 = 𝐿𝐸

𝑡
𝐿𝐸

𝑡 + 𝐿𝐼
𝑡

= 𝑅0𝑡

𝑅0𝑡 + 𝑅1𝑡 𝐿𝐼
0

𝐿𝐸
0

.

Hence, as time advances, the share of the population engaged in the en-
dowment production process shrinks towards zero:

lim
𝑡→∞

𝜃𝐸
𝑡 = 0.

This process reflects their lower reproductive success.
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